Солнечная батарея | |
Солнечная батарея — бытовой термин, используемый в разговорной речи или не научной прессе. Обычно под термином «солнечная батарея» подразумевается несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток. В отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя, солнечная батарея производит непосредственно электричество. Хотя, для производства электричества из солнечной энергии используются и солнечные коллекторы: собранную тепловую энергию можно использовать и для вырабатывания электричества. Крупные солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.), называются Гелиоэлектростанции (ГЕЭС). Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается быстрыми темпами в самых разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы, до занимающих крыши автомобилей и зданий.МикроэлектроникаДля обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п. ЭлектромобилиЭнергообеспечение зданийСолнечные батареи крупного размера, как и солнечные коллекторы, очень широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов. Новые дома Испании с марта 2007 года должны быть оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование[1]. В Нидерландах запущен проект по созданию оконного стекла «Smart Energy Glass» с функциональностью фотоэлемента (см. сайт проекта (англ.) ). Энергообеспечение населённых пунктовИспользование в космосеСолнечная батарея на МКС Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии. Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз). Эффективность фотоэлементов и модулей Мощность потока солнечного излучения на расстоянии 150 млн. км от Солнца, без учёта потерь в атмосфере Земли, составляет около 1350 ватт[2] на квадратный метр. В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[3] быть менее 100 Вт/м². С помощью наиболее распространённых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9 % -24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами снизится до уровня менее 0,10 €/ за кВт*ч для промышленных установок и менее 0,15 €/ за кВт*ч для установок в жилых зданиях.[4] Сообщается, что в отдельных лабораториях получены солнечные элементы с эффективностью 43 %. В январе 2011 года ожидается поступление на рынок солнечных элементов с эффективностью 39%. Максимальные значения эффективности фотоэлементов и модулей, достигнутые в лабораторных условиях[5]
Факторы, влияющие на эффективность фотоэлементовОсобенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры. Частичное затенение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.
|